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Radiation from vortex filament motion 
near a half plane 
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Department of Mathematics, Imperial College, London 
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The two-dimensional low Mach number sound field from the passage of a line 
vortex around the edge of a rigid half plane is calculated by singular perturba- 
tion methods. Simple exact expressions are given for the space-time variation of 
the acoustic field, and for the total radiated energy and its frequency spectrum. 
These expressions show in particular that the effect of the half plane is to increase 
the energy radiated by a nearby vortical flow by M-3, where M is a characteristic 
Mach number. 

1. Introduction 
Exact solutions for unsteady compressible rotational flow are very difficult 

to find. From the point of view of aerodynamic noise theory, only the solution 
given by Obermeier (1967) for the low Mach number sound field of a pair of spin- 
ning vortices appears to be of any significance as an example in which boundary 
effects are absent. Attempts to include the effects of solid surfaces in the flow 
increase the difficulty. Stiiber (1970) and Rahman (1971) have solved one such 
problem including a solid boundary; that of the sound field generated when a pair 
of vortex filaments move under the influence of their images towards an infinite 
rigid plane. However, the surface effect there is trivial, involving merely a re- 
flexion of sound by the plane. Another problem which is easily solved is that of the 
sound field from the rotation of a line vortex around a circular cylinder, provided 
the diameter of the circle described by the vortex is small compared with the 
appropriate acoustic wavelength. This problem can be simply and efficiently 
solved using matched asymptotic expansions. Again, however, the boundary 
effect is almost trivial. The cylinder scatters a dipole field and the intensity of the 
scattered sound varies as the fifth power of a typical flow velocity, which is just 
the analogue for two dimensions of Curle’s (1955) prediction as t o  the effect of 
solid surfaces. 

Now the general theories of aerodynamic noise scattering by flow-surface 
interaction (Pfowcs Williams & Hall 1970; Crighton & Leppington 1970, 1971) 
suggest that much more interesting and powerful effects occur if a flow is coupled 
to a large but inhomogeneous solid surface and it is important that these theories 
receive detailed confirmation from examination of whichever particular cases 
are susceptible to analysis. The author (Crighton 1972), following the work of 
Orszag & Crow (1970), has done this for the case of a vortex sheet leaving a 
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semi-infinite plate and undergoing a spatial Kelvin-Helmholtz instability. This 
note aims to provide a further example of the sound field from a weakly com- 
pressible flow, with concentrated voticity, coupled to a large but inhomogeneous 
solid surface. 

In the problem to be considered here, we again concern ourselves with a rigid 
half plane. A line vortex with its axis parallel to the edge of the plane is generated 
in the fluid surrounding the surface a t  a distance from the edge which is great 
compared with the shortest distance of the vortex from the plate. If the strength 
of the vortex is sufficiently small, and the circulation of the correct sense, the 
vortex moves with a speed which remains well subsonic and negotiates a path 
around the edge of the plate which is found in 5 2. For most of the time, the vortex 
moves in a path which is essentially straight and thus radiates virtually no sound 
field. Energy radiation occurs only from the phase of the motion in which the 
vortex passes round the edge, and it turns out, rather obviously, that the acoustic 
wavelength set by the time scale for passage around the edge is large compared 
with the distance of the vortex from the edge during that time. Such a situation 
is clearly capable of singular perturbation treatment. The acoustic field can be 
found by matching a wave field, scaled on the wavelength, to an incompressible 
field scaled on a typical distance from vortex to edge. 

Despite the lack of physical realizability of the flow, this example does enable 
us to derive simple expressions for all quantities of interest, at  least to a first 
approximation in Mach number, and provides further c o n h a t i o n  of the im- 
portant predictions of surface scattering theories. 

2. Incompressible flow 
Consider two-dimensional flow in the X, Y plane. A rigid semi-infinite plate 

lies in X < 0, Y = 0, and is surrounded by incompressible fluid. A line vortex 
with positive strength K and axis parallel t o  the plate edge is generated above the 
plate at a great distance down from the edge. We find first the path of the vortex 
in the presence of the plate. 

Define X + i Y = 2 = R exp i8, - n- < 8 < + n-, then a simple mapping shows 
that at the instant in which the vortex lies at 2, the complex potential for the 
motion is 

the overbar denoting the complex conjugate. The only singularity of Q(2) is 
at Z,, for Zfr +@ p 0 when arg Z and arg 2, are defined to lie in (-n-, +n). 
The fluid velocity components at a general point are given by 

u,-iuy = Q'(Z), 
and in particular , 

as E -f 0. The first term represents the motion induced directly by the vortex, 
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which must move with the velocity field induced by all causes other than the 
vortex itself. Hence the equations for the path of the vortex are 

dXo .a& i K  i K  1 +- -- 
at 7% = Gq, 4nZ,+ [Zo1’ 

or equivalently, 
dR,/dt = - (K/8nR0) tan p,, de,/dt = - K / ~ T R ; .  (2.2) 

These equations have the solutions 

R, = a sec go, 
0, = 2 tan-1 ( - Kt/8na2), 

Ro = (az + (Kt/8na)2)i 
(2.3) 

and show that the vortex sta,rts at ( - 00, 2a)  with velocity (~/87ra, 0)  when 
t = -a, passing through the point (a, 0 )  with velocity (0 ,  - ~ / 4 m a )  at t = 0 
and proceeding back to ( - co, - 2a) in a symmetrical fashion. 

It is convenient to make the space co-ordinates dimensionless using the 
minimum distance a and to scale the time variable on a / U ,  where U = ~ / 4 m a .  
Further, we normalize the complex potential on 2aU and then, using the same 
symbols as before, but referring now to the dimensionless variables, the in- 
compressible flow problem is defined by the equations 

(2.4) I R, = sec $Oo, tan $3, = - it, 
Q ( Z )  = - i In (z* - + i In (z* + Zi). 

3. The sound field 
Suppose now that the fluid is slightly compressible, in the sense that 

M = U/a,< 1, 

a, being the uniform sound speed. As remarked in $1, acoustic radiation takes 
place only over the time a/U during which the vortex undergoes appreciable 
acceleration. In  this time, acoustic influence extends over a roughly circular 
region of radius aM-l centred on the plate edge. This suggests that we rescale 
both space co-ordinates on aM-l, defining (x, y) = ( M X ,  M Y )  but leaving the 
time scaled on a/ U as before. The implications of the two sets of dimensionless 
co-ordinates for the equations of motion in the limit M + 0 have been examined 
in detail by Obermeier (1967) and Rahman (1971). Here we merely state the 
obvious consequence, that for fixed X ,  Y and M -+ 0 we obtain Laplace’s equa- 
tion 

for the velocity potential, while for fixed x, y and 2M -+ 0 we have 

VZ,$ = 0 

--vs $ = O .  g ) 
For both cases we have to impose the condition that $ has zero normal derivative 
on the half plane, while for the outerwave-field solution a radiation condition must 
apply a t  infinity. 
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To find the appropriate form of outer potential we express (2.4) in outer co- 
ordinates x, y, expand for M -+ 0,  and take the real part to obtain 

in view of the equation (2.4) for the vortex path. This suggests that the potential 
in the wave field has the form 

$(x, y, t )  = Jw(x ,  y, t )  +o(M% 

where f satisfies the wave equation, the boundary condition on the plate, a 
radiation condition at infinity and, in order to match the inner incompressible 
solution, is such that 

The simplest way of finding f is to take Fourier transforms in time, defining 

f(X, y, t )  exp ( iwt )  dt. 

Then + w”f(., y, w )  = 0 (3.2) 

and the matching condition (3.1) is - 
+ W  4% sin*8 

lim { M * f ( M X ,  M Y ,  w ) }  = 
M - t O  s - w  (t2+4)2 R* 

- - exp ( i o t )  dt 

where K-4 denotes the modified Bessel function of the second kind and of order 
- B and the value of the integral is taken from Gradshteyn & Ryzhik (1965, p. 
426). Evidently it is sufficient to consider only positive frequencies w .  Then 
it is easy to prove that the general solution for f ( ~ ,  y, w ) ,  subject to the require- 
ments that af/ay = 0 on 8 = * 7~ and that f(x, y, w )  exp ( - iwt) shall represent an 
outgoing wave field at infinity, is 

m W 

f ( ~ ,  y, w )  = C An(o) Hgi+ (wr)  sin (n + 3) 8+ B,(w) Hg)(wr)  cos no. 
n=O n=O 

Only one term of this series is capable of satisfying the matching requirement 
(3.3) and we find immediately that 

f(x, y, w )  = A ( @ )  H t ) ( w r )  sin +9, 

where A ( @ )  = 4ir(*) w & ~ - p w ) .  (3.5) 

(3.4) 

For negative frequencies we use the fact thatf(x, y, - w )  = f(x, y, a). 
The expressions (3.4) and (3.5) are useful for constructing the frequency 

spectrum of the total radiated energy. It is possible also, however, to invert the 
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t. We have 

$+, Y, t )  = 
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and to find the wave-field potential as a function of x and 

The integral is tabulated (Gradshteyn & Ryzhik 1965, p. 749) and with use of the 
formula r ( x )  I?( 1 - x) = 7~ cosec ~ T X  gives 

This expression obviously matches the incompressible flow solution in the 
manner demanded by (3.1). We see that, near the wave front r= t, the potential 
has the form r-4 sin $0 typical of rigid half-plane problems. This behaviour is also 
found in each individual frequency component, as shown by (3.4). The maximum 
potential at any point (r,  0) is reached at a time r after the vortex passes through 
the point (a, 0) on the extension of the half plane. For fixed t ,  + N r-l as r -+ co 
while for fixed r ,  + N I t14 as It1 + co, so that the field varies remarkably slowly. 

The total energy radiated by the vortex throughout its history is most easily 
found from (3.4) and (3.5). After a little algebra we find 

where the spectral distribution of energy over the (dimensionless) frequency w 

€ ( w )  = w W 4 ( 2 w ) .  (3.8) 
is given by 

The (constant) value of the integral in (3.7) can be found from Gradshteyn & 
Ryzhik (1965, p. 693) but is of no significance here. 

The interesting point of (3.7) is the variation of E with the third power of 
velocity. This is to be contrasted with the U6 variation found by Obermeier 
(1967), Stiiber (1970) and Rahman (1971) for the radiated energy of vortex fila- 
ment systems in free space or in the presence of an inJinite rigid wall. This repre- 
sents a confirmation of general theories (Ffowcs Williams & Hall 1970; Crighton 
& Leppington 1970, 1971) of the scattering from unsteady flow interaction with 
a half plane on two counts. First, we have the directivity function sin+@, and 
second, the prediction that the effect of flow interaction with a rigid half plane is 
to increase the power output of the flow by M-3. The spectral distribution of 
energy has just the features which might be expected. 8 ( w )  behaves like w as 
w -+ 0 and like w t  exp ( - 4w) as w --f co, with a single maximum at a dimension- 
less frequency around unity. 

4. Conclusions 
The method of matched asymptotic expansions provides an efficient means 

of calculating the radiation from low Mach number flows generated by systems 
of vortex filaments. In  the past, it has been applied by workers at Gottingen 
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(Obermeier and Rahman ) to flows in free space or in the presence of an infinite 
plane boundary It is possible to treat those problems using Lighthill’s (1952) 
general theory together with Powell’s (1964) expression for Lighthill’s quadru- 
pole inhomogeneity, and Stiiber (1970) has confirmed the results of Obermeier 
and Rahman in this way. 

In the present note we have applied the singular perturbation method to a 
vortex filament coupled to a rigid half plane. Simple expressions, (3.6), (3.7) and 
(3.8)’ are readily derived for all quantities of interest and the results confirm the 
predictions of general theories as to  the great scattering efficiency of the half 
plane. Lighthill’s theory might also be used to obtain these results provided one 
were to evaluate Lighthill’s integral using the exact Green’s function for a rigid 
half plane rather than the free-space Green’s function. Of course, it would also be 
advisable to use Powell’s expression div (u x w), where w now denotes the vort- 
icity in place of Lighthill’s a2qj/axi ax,, in order to take advantage of the delta 
function singularity of the vorticity in the present problem. There are consider- 
able difficulties in such an approach, however, and the additional disadvantage 
of this method in requiring at least a suitable approximation to the exact Green’s 
function turns the scales heavily in favour of the matching approach. 

The more general problem of the passage of a line vortex around the edge of 
any wedge with included angle a rational fraction of n- can also be solved by the 
perturbation method. The general features of the solution - i.e. the directivity 
and the velocity exponent for the radiated energy - follow at once from simple 
consideration of the mapping used to solve the incompressible problem and 
emerge so obviously as to need no further comment. 

This work was carried out in association with Dr Manfred Heck1 of Miiller-BBN, 
Munich, whose research programme is supported by the Ministry of Defence, 
Bonn. 
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